mach Documentation
Release 0.4.3-4-g1667800

Oz Tiram

Nov 20, 2021

Contents

1 MA.CH 1
L1 Features. o oo 1
1.2 Inmstallation L e e e e 3
2 Installation 5
2.1 Stablerelease 5
2.2 FromsSOUICES v v v v vttt i e e e e e et e e e e e e e e 5
3 Usage 7
3.1 Examplemachl e e e e e e e e e e e 7
3.2 Advanced machl with default values and JSON parsing 9
33 Usingmach2Z. 9
34 Advanced machl with default values and JSON parsing 10
3.5 Flagsvs. Commands oL e e e e e e e e e e e e e e e e 11
3.6 Explicit shell or implicit shell using mach2 i e 11
3.7 Inheritence and ‘private’ methods oL 12
3.8 Extralong help for subcommands o0 13
4 Contributing 15
4.1 Typesof Contributions L 15
4.2 GetStarted! e 16
4.3 Pull Request Guidelines e e 16
44 TIPS « v o e e e e e e e e e e e e e e e e e e 17

CHAPTER 1

M.A.C.H

Magical Argparse Command Helper

- A
' 5 7 | ' |
- A b, . b, A

1.1 Features

* Get your CLI interfaces quickly

 Turn a simple class to a CLI application or an interactive interpreter.

Given:

class Calculator:

def

def

add (self, a, b):
"""adds two numbers and prints the result"""
return a + b

div(self, a, b):

(continues on next page)

http://mach.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/oz123/mach
https://coveralls.io/github/oz123/mach?branch=master

mach Documentation, Release 0.4.3-4-g1667800

(continued from previous page)

mwn

""rdivide one number by the other
return a / b

You can make command line application using the decorator mach1l:

from mach import machl

@machl ()
class Calculator:

def add(self, int: a, int: Db):
"""adds two numbers and prints the result"""
print (a + b)
def div(self, int: a, int: Db):
"""divide one number by the other"""
print(a / b)

calc = Calculator ()

calc.run()

Now if you run the module, you will get a program that you can invoke with the flag —h or ——help:

$ python calc.py -h
usage: calc.py [-h] {add,div}

positional arguments:

{add, div} commands
add adds two numbers and prints the result
div divide one number by the other

optional arguments:
-h, —--help show this help message and exit

each method is a subcommand, with type checking and it’s own very help. Hench, this won’t work:

$ python calc.py add foo bar
usage: calc.py add [-h] b a
calc.py add: error: argument b: invalid int wvalue: 'foo'

And this will:

$ python calc.py add 4 9
13

To see the help of the subcommand use —h:

$ python calc.py add -h
usage: calc.py add [-h] b a

positional arguments:
b
a

(continues on next page)

2 Chapter 1. M.A.C.H

mach Documentation, Release 0.4.3-4-g1667800

(continued from previous page)

optional arguments:

-h, --help show this help message and exit

With the help of the decorator mach?2 you can turn your class to CLI application and have also an iteractive shell
which invoke when no parameters are given:

$./examples/calc2.py
Welcome to the calc shell. Type help or ? to list commands.

calc2 > 2

Documented commands (type help <topic>):

add div exit help

calc2 > help add

adds two numbers and prints the result
calc2 > add 2 4

6

calc2 > div 6 2

3.0

calc2 > exit

Come back soon

$

1.2 Installation

You can get mach from PyPI using pip:

’$ pip install mach.py

1.2. Installation 3

mach Documentation, Release 0.4.3-4-g1667800

4 Chapter 1. M.A.C.H

CHAPTER 2

Installation

2.1 Stable release

To install mach, run this command in your terminal:

’$ pip install mach

This is the preferred method to install mach, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for mach can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/0z123/mach

Or download the tarball:

’$ curl -OL https://github.com/0z123/mach/tarball/master

Once you have a copy of the source, you can install it with:

’$ python setup.py install

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/oz123/mach
https://github.com/oz123/mach/tarball/master

mach Documentation, Release 0.4.3-4-g1667800

6 Chapter 2. Installation

CHAPTER 3

Usage

m.a.c.his asingle Python module which has two decorators for usages. The first decorator machl turns a normal
Python class to a command line application with subcommand a-la git or docker. If the application has no need
for subcommands you can simply define a default subcommand which will be invoked automatically.

3.1 Example machl

from mach import machl

@machl ()
class Hello:

default = 'greet'
A doc string should always have a title

an empty space
name of the option followed by a hyphen
short description

def greet (self, count: int=1, name: str=""):
"""Greets a user one or more times

count - the number of times to greet the user

name — the name of the user to greet
mmn

if not name:
name = input ('Your name: ')

for ¢ in range (count) :

[}

print ("Hello $%s" % name)

(continues on next page)

mach Documentation, Release 0.4.3-4-g1667800

(continued from previous page)

def part (self):
"""politely part from a user"""
print ("It was nice to meet youl!")

if _ name_ == '_ main_
Hello () .run ()

The greet . py has two sub-commands greet and part. You don’t neet to give the greet sub-command as an
argument:

$./examples/greet.py
Your name: Tom

Hello Tom

$

The greet sub-command has two optional arguments which you can also give in the command line:

$./examples/greet.py greet —-name tom —--count 3
Hello tom
Hello tom
Hello tom

The application is automatically documented. The first line of a method docstring is documenting the subcommand:

$./examples/greet.py -h
usage: greet.py [-h] {greet,part}

positional arguments:

{greet,part} commands
greet Greets a user one or more times
part Politely part from a user

optional arguments:
-h, --help show this help message and exit

Using a carefully formatted docstring you can automatically document the options of your sub-commands. This
documentation will be printed when a sub-command help option is invoked:

./examples/greet.py greet -h
usage: greet.py greet [-h] [-—name NAME] [—-—-count COUNT]

optional arguments:
-h, —-help show this help message and exit
——name NAME, -n NAME the name of the user to greet (default:)
——count COUNT, -c¢ COUNT
the number of times to greet the user (default: 1)

Also note, that the automatically added options support both long and short variants. Hence, these invocataions are
possible:

./examples/greet.py -c¢c 3 —n Tom

./examples/greet.py —-count 3 -n Tom
./examples/greet.py —-count 3 —-name Tom
./examples/greet.py —-c 3 —-name —-Tom

8 Chapter 3. Usage

mach Documentation, Release 0.4.3-4-g1667800

3.2 Advanced machl with default values and JSON parsing

You can write methods with default values or with a certain number of open options as in x+kwargs passed to a
Python method:

See examples/uftpd.py for an implementation of a hypothetical FTP server example.

You can invoke this ftp server with:

$./examples/uftpd.py --foreground --level 3

This will run the server in the foreground with a verbosity level 3.
$./examples/uftpd.py —opts="{“ftp”: 21}" serving FTP on port 21

opts is automatically parsed as JSON. The server will run in the background and a verbosity level of 2.

3.3 Using mach2

The decorator mach2 adds on top of machl all the existing capabilities, the ability to turn a class to an interactive
interpreter. The most simple interactive interpreter is a command line calculator:

import sys
from mach import mach2

@mach2 ()
class Calculator:

def add(self, a: int, b: int):
"""adds two numbers and prints the result"""
print (" + => "% (a, b, int(a) + int(b)))

def div(self, a: int, b: int):
"""divide one number by the other"""
print (" / => " % (a, b, int(a) // int(b)))

def exit (self):
"""exist to finish this session"""
print ("Come back soon ...")

sys.exit (0)

if _ name_ == '_ _main__ ':
calc = Calculator()
calc.intro = 'Welcome to the calc shell. Type help or ? to list commands.\n'
calc.prompt = 'calc2 > '

calc.run()

You can invoke this application via the command line by giving a sub-command:

$./examples/calc2.py add 5 6
6 + 5 => 11

Or start an interactive session by not giving any sub-command:

3.2. Advanced machl with default values and JSON parsing 9

mach Documentation, Release 0.4.3-4-g1667800

$./examples/calc2.py
Welcome to the calc shell. Type help or ? to list commands.

calc2 >

You can now type a command in the interactive interpreter:

calc2 > add 7 3
7 + 3 => 10
calc2 > div 16 8
16 / 8 => 2

As with machl doc-strings are used to documented your application functionality:

calc2 > help div

divide one number by the other

calc2 > help add

adds two numbers and prints the result

3.4 Advanced machl with default values and JSON parsing

A simple calculator does not all the features mach2 offers. A better example is a hypothetical FTP client.
See examples/1ftp.py

Once started it waits for user input at the 1 ftp prompt:

$./examples/lftp.py
Welcome to the 1ftp client. Type help or ? to list commands.

1lftp > help

Documented commands (type help <topic>):

connect exit help login 1s

lftp > help connect
connect to FTP host

host - the host IP or fagdn
port - the port listening to FTP

Typing the help command will list the available commands. Typing help connect lists the arguments that the
command connect gets, by parsing the method’s docstring.

Since this command can now be invoked in any of the following ways:

lftp > connect 10.10.192.192
Connected to 10.10.192.192:21

1lftp > connect host=foo.example.com port=21
Connected to foo.example.com:21

1lftp > connect foo.example.com 2121
Connected to foo.example.com:2121

(continues on next page)

10 Chapter 3. Usage

mach Documentation, Release 0.4.3-4-g1667800

(continued from previous page)

lftp > connect foo.example.com 21 opts='{"user": "o0z123", "password": "s3kr35"}'
Connected to foo.example.com:21
Login success

The last invocation also shows that you can pass extra arguments as JSON.

The interpreter is checking how you invoke the commands. Hence this all don’t work:

1ftp > connect foo 2121 bar

*%% Unknown syntax: connect foo 2121 bar

lftp > help login

login to the FTP server

lftp > login 0z123 s3kr35

Login success

1ftp > login foobar secret error

xx* Unknown syntax: login foobar secret error

3.5 Flags vs. Commands

Sometimes you want to add global flags to your applications. Here is an hypothetical CLI application:

’$./bolt —-verbositiy=2 clone https://...

This application launches the subcommand clone with the verbosity level 2. This can be done with:

@machl ()
class Bolt:
mmwn
The main entry point for the program. This class does the CLI parsing
and descides which action shoud be taken
mmwn
def __ _init__ (self):
self.parser.add_argument ("-v", "--verbosity")
self._verbosity = 1

def _set_verbosity(self, wvalue):
"set verbosity"
self._verbosity = value

See the example bolt . py for more details.

3.6 Explicit shell or implicit shell using mach2

The example calc2.py and Iftp have an implicit shell option. That is, if the program called with out arguments it will
start an interactive shell session, like the Python interpreter itself.

However, you might not desire this behaviour. Instead you prefer an explicit argument for a shell invocation. If so,
you can simply decorate your class with:

@mach2 (explicit=True)
class Calculator:

(continues on next page)

3.5. Flags vs. Commands 11

mach Documentation, Release 0.4.3-4-g1667800

(continued from previous page)

def add(self, a: int, b: int):
"""adds two numbers and prints the result"""
print (" + => "% (a, b, int(a) + int(b)))

Now, and interactive shell option is added:

$./examples/calc2.py -h
usage: calc2.py [-h] [-—-shell] {add,div,exit}

positional arguments:
{add,div,exit} commands

add adds two numbers and prints the result
div divide one number by the other
exit exist to finish this session

optional arguments:

-h, --help show this help message and exit

——shell run an interactive shell (default: False)
$./examples/calc2.py —--shell
Welcome to the calc shell. Type help or ? to list commands.

calc2 >

3.7 Inheritence and ‘private’ methods

The examples shown above always create a command line interface from all methods defined in a class. So if we have
a class which inherits methods from another class, all methods will have a ‘public’ command line interface:

class Foo:
def foo(self):
pass
def bar(self):
pass

@machl ()
class Baz (Foo)
def do(self):
pass

This a will create a command line interface for do but also for foo and bar. This can be avoided by naming the class
method with a leading underscore _:

class Foo:
def _foo(self):
pass
def _bar(self):
pass

@machl ()
class Baz (Foo)
def do(self):
self. _foo()

12 Chapter 3. Usage

mach Documentation, Release 0.4.3-4-g1667800

This creats a command line interface only for do, and the ‘private’ methods are hidden.

3.8 Extra long help for subcommands

You can use an extended help format for subcommands. Just add — after describing the options of each subcommand.
Below these — you can add a longer text which will be shown next to each subcommand. This is demonstated by the
example uftpd2.py:

./examples/uftpd2.py -h
usage: uftpd2.py [-h] {server}

positional arguments:
{server} commands
server No nonsense TFTP/FTP Server. add some long test below these
three dashes

optional arguments:
-h, ——help show this help message and exit

3.8. Extra long help for subcommands 13

mach Documentation, Release 0.4.3-4-g1667800

14 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/oz123/mach/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

4.1.2 Implement Features

Look through the Gitlab issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

4.1.3 Write Documentation

mach could always use more documentation, whether as part of the official mach docs, in docstrings, or even on the
web in blog posts, articles, and such.

15

https://github.com/oz123/mach/issues

mach Documentation, Release 0.4.3-4-g1667800

4.1.4 Submit Feedback

The best way to send feedback is to submit and issue.
If you are proposing a feature:
 Explain in detail how it would work.
» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up mach for local development.
1. Fork the mach repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com/0z123/mach.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ cd mach/
$ pipenv shell
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 mach tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

16 Chapter 4. Contributing

mach Documentation, Release 0.4.3-4-g1667800

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.4, 3.5 and 3.6. Check and make sure that the tests pass for all
supported Python versions.

4.4 Tips

To run a subset of tests:

’$ py.test tests.test_mach

4.4. Tips 17

	M.A.C.H
	Features
	Installation

	Installation
	Stable release
	From sources

	Usage
	Example mach1
	Advanced mach1 with default values and JSON parsing
	Using mach2
	Advanced mach1 with default values and JSON parsing
	Flags vs. Commands
	Explicit shell or implicit shell using mach2
	Inheritence and ‘private’ methods
	Extra long help for subcommands

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

